

5

		Grand mean	Group mean		Within score	Betweer score
	X	.X	X. j	$(x_p \cdots x_n)$	$(x_q - x_d)$	$\left(x_{ij} + x\right)$
1	3	3.11	3.00	-0.11	0.00	-0.11
1	4	3.11	3.00	0.89	1.00	-0.11
1	2	3.11	3.00	-1.11	-1.00	-0.11
2	1	3.11	1.33	-2.11	-0.33	-1.78
2	2	3.11	1.33	-1.11	0.67	-1.78
2	1	3.11	1.33	-2.11	-0.33	-1.78
3	5	3.11	5.00	1.89	0.00	1.89
3	6	3.11	5.00	2.89	1.00	1.89
3	4	3.11	5.00	0.89	-1.00	1.89

		ЗС _И	XC.,	$\mathcal{X}_{i,j}$	$\left(x_{g} - x_{c}\right)$	$(x_{ij} + x_{ij})$	$\left(x_{ij} - x_{i}\right)$
T	1	3	3.11	3.00	-0.11	0.00	-0.11
	1	4	3.11	3.00	0.89	1.00	-0.11
	1	2	3.11	3.00	-1.11	-1.00	-0.11
	2	1	3.11	1.33	-2.11	-0.33	-1.78
	2	2	3.11	1.33	-1.11	0.67	-1.78
	2	1	3.11	1.33	-2.11	-0.33	-1.78
	3	5	3.11	5.00	1.89	0.00	1.89
	3	6	3.11	5.00	2.89	1.00	1.89
	3	4	3.11	5.00	0.89	-1.00	1.89
_					$\sum \left(x_{ij} - \overline{x}_{} \right)^2$	$\sum \left(x_{ij} - \overline{x}_{.j} \right)$	$\Big)^2 \sum (x_{j} -$
					SST	SSW	SSB
					24.89	4.67	20.2

TITLE: simple mediation DATA: FILE IS mydata.dat; ! text file containing raw VARIABLE: NAMES ARE x m y; USEVARIABLES ARE x m y; ANALYSIS: BOOTSTRAP IS 5000; ! bootstrap is r MODEL: ! model specification follows m ON x; ! regress mediator on independent v y ON x m; ! regress outcome on both mediator MODEL INDIRECT: ! request significance test for y IND m x; ! indirect effect of Interest (ending OUTPUT: CINTERVAL(BCBOOTSTRAP); ! request bias-corrected bootstrap	w data in long format ecommended for simple mediation ariable or and independent variable to indirect effect of x on y via m in y and starting with x) $m = \beta + q x + \epsilon$
! confidence intervals	$\mathbf{m}_i = \boldsymbol{\beta}_1 + \boldsymbol{u} \ \mathbf{x}_i + \boldsymbol{v}_i$ $\mathbf{y}_i = \boldsymbol{\beta}_2 + \boldsymbol{b} \ \boldsymbol{m}_i + \boldsymbol{r}_i$
Source: http://www.quantpsy.org/pubs/syntax_appendix_081311.pdf	
43	

Bootstra	apping		
ootstrap is a stra wn to the top of	ap that is looped an f a boot for pulling	ıd it on.	O.
otstrapping usu	ally refers to a self	[-	
arting process the	hat is supposed to external input.		
statistics	at is supposed to external input.	Statistical inference	
statistics mean	Sampling distribution Normal distribution	Statistical inference Z-test	
Statistics mean MSR	supposed to external input. Sampling distribution Normal distribution F-distribution	Statistical inference Z-test F-test	
$\frac{\text{Statistics}}{\text{MSR}}$	at is supposed to external input. Sampling distribution Normal distribution F-distribution T-distribution	Statistical inference Z-test F-test t-test	

24

					5
Mplus Ou	tput				
C:\Windows\system	32\cmd.exe				_ 🗆 ×
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	190	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	191	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	192	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	193	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	194	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	195	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	196	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	197	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	198	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	199	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	200	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	201	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	202	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	203	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	204	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	205	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	206	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	207	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	208	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	209	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	210	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	211	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	212	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	213	
ESTIMATION W	ITH BOOTSTRAP	DRAW	NUMBER	214	•

us output	1	
Mplus VERSION 7.11	SUMMARY OF ANALYSIS	
MUTHEN & MUTHEN		
05/22/2014 9:21 AM	Number of groups	I.
	Number of observations	962
INPUT INSTRUCTIONS	Number of dependent variables	2
TITLE: Example of Mediation using Mpls	Number of independent variables	I.
DATA:	Number of continuous latent variables	0
FILE IS OS-902.dat;		
FORMAT is FREE;	Observed dependent variables	
VARIABLE:	Continuous	
names are x m y;	M Y	
usevariables are x m y;	Observed independent variables	
ANALYSIS:	X	
bootstrap = 1000;		
MODEL:	Estimator	ML
m on x (a);	Information matrix	OBSERVED
y on m (b);	Maximum number of iterations	1000
х;	Convergence criterion	0.500D-04
MODEL CONSTRAINT:	Maximum number of steepest descent itera	tions
new (ind);	Number of bootstrap draws	
ind = a*b;	Requested	1000
output:	Completed	1000
cinterval (bcbootstrap);	Input data file(s)	
	OS-902.dat	
	Input data format FREE	
INPLIT READING TERMINIATED NORMALLY		

mi champie. Co		,		
$Me = a_0 + a_1 x$ $y = b_0 + b_1 Me + b_2 Mo + b_3 MeMo$ $y = (b_0 + a_0 b_1) + \left[a_1(b_1 + b_3 Mo)\right] x$	$ \begin{array}{c} & b_0 =01 \\ a_0 = .03 & b_1 =43 \\ a_1 = .62 & b_2 =02 \\ & b_3 =52 \end{array} \\ + (b_2 + a_0 b_3) Mo \end{array} $) Dys Team Beh	Neg Team Aff Tone	VonV eg Exp Team Perf
Table 3 (.62)[(43)+(52)Mo]	ract Effect			
Table 3 (.62)[(43)+(52)Mo] Regression Results for Conditional Indu Predictor	rect Effect B	SE	t	p
Table 3 (.62)[(43)+(52)Mo] Regression Results for Conditional Indu Predictor	erect Effect B ative team affective tone	SE	t	p
Table 3 (.62)[(43)+(52)Mo] Regression Results for Conditional Indu Predictor Neg	ative team affective tone	SE 0.06	t 0.42	<i>p</i> .675
Table 3 (.62)[(43)+(52)Mo] Regression Results for Conditional Indu Predictor Constant Dysfunctional team behavior	<i>B</i> ative team affective tone 0.03 0.62	<i>SE</i> 0.06 0.17	t 0.42 3.71	<i>p</i> .675 .001
Table 3 (.62)[(-43)+(-52)Mo] Regression Results for Conditional Indu Predictor Constant Dysfunctional team behavior	B ative team affective tone 0.03 0.62 Team performance	SE 0.06 0.17	t 0.42 3.71	<i>p</i> .675 .001
Table 3 (.62)[(-43)+(-52)Mo] Regression Results for Conditional Indu Predictor Constant Dysfunctional team behavior Constant	<i>B</i> ative team affective tone 0.03 0.62 Team performance -0.01	SE 0.06 0.17 0.06	t 0.42 3.71 -0.19	<i>p</i> .675 .001
Table 3 (.62)[(43)+(52)Mo] Regression Results for Conditional Indu Predictor Constant Dysfunctional team behavior Constant Negative team affective tone (NAT)	$\frac{B}{0.03}$ Team performance -0.01 -0.43	SE 0.06 0.17 0.06 0.13	t 0.42 3.71 -0.19 -3.33	<i>p</i> .675 .001 .846 .002
Table 3 (.62)[(-43)+(-52)Mo] Regression Results for Conditional Indu Predictor Constant Dysfunctional team behavior Constant Negative team affective tone (NAT) Nonverbal negative expressivity (N-exp)	$\frac{B}{0.03}$ Team performance -0.01 -0.02	SE 0.06 0.17 0.06 0.13 0.12	t 0.42 3.71 -0.19 -3.33 -0.16	<i>p</i> .675 .001 .846 .002 .877

				$\mathbf{T}_{\mathbf{i}}$
$\begin{bmatrix} a_1(b_1+b_3) \\ (62) \\ (62) \\ (63)$	$\underbrace{[ao]}_{52} x + (b_2 + a_0 b_3) Mo$	Dys Team Beh	Aff Tone	b ₁ Team Perf
(.02)[(+3)+(
r Conattional I	Boot indirect effect	Boot SE	Boot z	Boot p
Conditional	indirect effect at N-exp = M	$4 \pm 1 SD$		
	-0.07	0.15	-0.49	.626
	-0.26	0.12	-2.17	.030
	-0.44	0.16	-2.74	.006
	(.62)[(43)+(r Conditional 1 xpressivity Conditional	(.62)[(.43)+(.52)Mo] <u>r</u> Conditional Indirect Effect xpressivity Boot indirect effect Conditional indirect effect at N-exp = M -0.07 -0.26 -0.44	$\frac{\text{Beh}}{(.62)[(.43)+(52)Mo]}$ <i>r Conditional Indirect Effect</i> xpressivity Boot indirect effect Boot SE Conditional indirect effect at N-exp = $M \pm 1$ SD -0.07 0.15 -0.26 0.12 -0.44 0.16	[.62][(.43)+(.52)Mo] <i>r Conditional Indirect Effect</i> xpressivity Boot indirect effect Boot SE Boot z Conditional indirect effect at N-exp = $M \pm 1$ SD -0.07 0.15 -0.49 -0.26 0.12 -2.17 -0.44 0.16 -2.74

Output Pootot	ronr	nin a	*00	111+0			
Output. Bootst	rapp	Jilla	168	uns			
							<u> </u>
CONFIDE	NCE INTE	RVALS O	F MODEL	RESULT	S		
Lower .5%	Lower 2.	5% Low	er 5% 💽	stimate	Jpper 5%	Upper 2.5	Upper .5%
M ON							
Х	0.614	0.639	0.653	0.721	0.790	0.803	0.842
W	0.616	0.632	0.646	0.713	0.781	0.792	0.815
XW	0.166	0.200	0.217	0.303	0.387	0.400	0.447
Y ON							
М	0.547	0.611	0.636	0.785	0.932	0.960	1.014
Х	-0.306	-0.263	-0.235	-0.100	0.028	0.049	0.095
W	-0.382	-0.321	-0.300	-0.167	-0.037	-0.011	0.044
XW	-0.209	-0.171	-0.152	-0.045	0.060	0.084	0.122
Intercepts							
М	-0.046	-0.024	-0.013	0.045	0.105	0.114	0.142
Y	2.054	2.079	2.093	2.166	2.238	2.254	2.285
Residual V	ariances						
М	0.193	0.206	0.213	0.251	0.303	0.313	0.327
Y	0.267	0.288	0.298	0.350	0.429	0.447	0.472
New/Addi	tional Para	meters					
$[(1, 1, m_{\ell}) * 1] [(1, 1, m_{\ell}) * 1]$ IND H	0.527	0.592	0.619	0.769	0.953	0.980	1.031
$\left\lfloor \begin{pmatrix} b_1 + b_2 W_h \end{pmatrix}^* b_3 \rfloor - \left\lfloor \begin{pmatrix} b_1 + b_2 W_l \end{pmatrix}^* b_3 \rfloor \text{IND} L \right\rfloor$	0.207	0.240	0.259	0.363	0.494	0.521	0.569
\longrightarrow IND_D	0.23	0 0.26	0.293	<u>0.406</u>	<u>6</u> 0.559	0.580	0.654
> 92							

46

O	utnut							
	arpar							
CONFI	DENCE INT	ERVALS O	F MODEL	RESULT	8			
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	% Upper 2.:	5% Upper .5%	
М	ON							
Х	0.614	0.639	0.653	0.721	0.790	0.803	0.842	
W	0.616	0.632	0.646	0.713	0.781	0.792	0.815	
XW	0.160	6 0.200	0.217	0.303	0.387	0.400	0.447	
Y (ON							
Х	-0.305	-0.263	-0.235	-0.100	0.027	0.049	0.095	
W	-0.382	-0.321	-0.300	-0.167	-0.037	-0.011	0.044	
XW	-0.20	9 -0.171	-0.153	-0.045	0.059	0.084	0.122	
М	0.547	0.611	0.636	0.785	0.932	0.960	1.014	
New/A	dditional Par	rameters						
IND	0.13	5 0.158	0.172	0.238	0.327	0.339	0.382	
		+		†		+		
	-							

 The value value value	e Mplus program will autoriables. However, one need dogenous variables created rrelated. For example, the ndom slope (b_{Ii}) , group met	comatically correlate all exoged ds to specify what level 2 d in our model should be random intercept (b_{0j}) , the ean of y (\overline{y}_i) are created in o	enous
• In lev	odel. our model, these three var rel 2. We allow them to co	iables and W_j are all exogen rrelate:	ous at
• In lev	odel. our model, these three var rel 2. We allow them to co HLM terminology	iables and W_j are all exogen rrelate: Mplus terminology	ous at Correlates
• In lev	odel. our model, these three var rel 2. We allow them to co HLM terminology b_{0j} with b_{1j}	riables and W_j are all exogen rrelate: Mplus terminology m with S	ous at Correlates b _{oj} with b _{ij}
• In lev	bdel. our model, these three var rel 2. We allow them to co $\frac{\textbf{HLM terminology}}{b_{0j} \text{ with } b_{1j}}$	riables and W_j are all exogen rrelate: Mplus terminology m with S y with m	ous at
mo • In lev	bdel. our model, these three var rel 2. We allow them to co $\frac{\textbf{HLM terminology}}{\underline{b_{0j} \text{ with } b_{1j}}}$	riables and W_j are all exogen rrelate: Mplus terminology m with S y with m y with S	ous at $ \begin{array}{c} Correlates\\ b_{0j} with b_{1j}\\ \overline{y}_{,j} with b_{0j}\\ \overline{y}_{,j} with b_{1j}\\ \overline{y}_{,j} with b_{1j}$

Since th	$\theta = ([a_1 + $ ne moderated curvilir yould need to tabulat	a_4w]+2 $[a_2 + a_4w]$ hear mediation effect both parameters to	$b_5 w] x) b_1$ size depends on both w check the effect.	and
	W _{High}	W _{Low}	Δw	
$x_{ m High}$	026	155	.129 [.044 , .212]	
x _{Low}	129	577	.449 [.123 , .771]	
Δx	.102 [.003 , .201]	.422 [.086 , .757] (320 [568 ,069]	>
88		н (т s	For different values of W W_H vs. W_L), the curvilir nediation effect is significantly different.	near

